If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-400x-14700=0
a = 1; b = -400; c = -14700;
Δ = b2-4ac
Δ = -4002-4·1·(-14700)
Δ = 218800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{218800}=\sqrt{400*547}=\sqrt{400}*\sqrt{547}=20\sqrt{547}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-400)-20\sqrt{547}}{2*1}=\frac{400-20\sqrt{547}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-400)+20\sqrt{547}}{2*1}=\frac{400+20\sqrt{547}}{2} $
| 2y+10=10 | | p+19=5 | | -2x2+8x-6=0 | | 15x+10x+30=90 | | -2x²+8x-6=0 | | 1/5x-3/10=4/5 | | 2u=30+3U | | j+5=0 | | x^2-400-14700=0 | | n+8=-17 | | 2x+22=4x(+3) | | 2(a-4)=2a-8+4a | | |7x+3|=4 | | p+11=10 | | 11z5=9z+7 | | 2x+22=4x-30) | | 2(a-8)=2a-8+4a | | 75+(x+20)=180 | | 14x-9=123 | | 2x+47=5x-4 | | 2x+9(x–1)=8(2x+2)–5 | | 2x+50=5X-4 | | 7((p+1)=9-p | | 7=(-18+3x) | | 5x=3x–6 | | Y-6=6(x+4) | | |4x+20|=8 | | x/9+6=14 | | 16y+22=80 | | 5p=3p–6 | | 13.3+y/7=4.2 | | 155=10(x-65)+75 |